Skip to content

GREENGROUND

Daily Insights for a Smarter Tomorrow

Menu
  • Home
  • Medium
  • About Us
    • Mission
    • Contact Us
Menu

Sodium Batteries May Power Your New Electric Car

Posted on November 8, 2021 by Livio Andrea Acerbo

Sodium is a common element that’s usually mined from soda ash, but it can be found basically anywhere, including in seawater and in peat from bogs. It also happens to be well-suited to the kinds of applications Meng is describing. The ions are a little heavier and bigger than those of lithium, meaning you can’t pack as much energy into a small space, like the belly of a car. “Where sodium batteries can make a big impact is on the grid,” explains Nuria Tapia-Ruiz, a professor at Lancaster University and director of the Faraday Institution’s sodium battery initiative. Those batteries can be a little bigger, a little heavier, but it doesn’t matter because they just need to sit tight.

Historically, Tapia-Ruiz says, sodium batteries have been held back in part because of chemical stability. While sodium and lithium are periodic neighbors, they exist in parallel universes of chemistry, reacting differently with various elements and compounds. This means switching to sodium requires developing novel materials for the battery’s cathode and anode, the positive and negative electrodes that capture and release ions as the battery is charged up and then spent. One particular trouble is that chemical reactions inside the battery can eat away at the electrolyte that sits between the electrodes, reducing battery life or risking the creation of sodium metal, which can be explosive. Another challenge is that energy-dense sodium batteries typically contain nickel, as do many lithium batteries. Eliminating that metal is a key concern for researchers, though difficult. “But that’s the right thing to do because you want to create a technology that is sustainable and very green,” Tapia-Ruiz says.

But the handful of labs and startups still working with sodium have made quiet progress in recent decades. Natron, a California-based startup, builds sodium batteries primarily for backup power at industrial facilities and data centers. The company uses a material called Prussian blue as the basis for its electrodes, a variation of the early synthetic pigment used in iconic paintings, including Under the Great Wave Off Kanagawa. Inside a battery, the design is not especially energy-dense, even by sodium standards. But one advantage, according to Jack Pouchet, the company’s vice president of sales, is that “Our supply chain could be local.” It contains common elements like sodium, manganese, and iron, and the factory is in Santa Clara, California. For what it lacks in energy storage, the battery can charge and dispense that energy fast. Oomph over range. The company hopes its batteries can be used to quickly charge electric cars when the power grid is stretched thin. Natron is moving ahead with plans to install such devices in San Diego, Pouchet says.

“I was thinking everybody would have a refrigerator for electrons in your home in the same way you have a refrigerator for food.” 

Shirley Meng, battery scientist, UC San Diego 

The company’s other pitch is safety. Pouchet points to incidents at grid battery storage operations, including a major fire at a battery facility in Australia and overheating at another installation in California, as raising concerns about the advisability of putting batteries in everyone’s house, however rare those fires might be. “I wouldn’t want to have that in my garage,” he says. The company’s website features demonstration videos of crushing and heating the battery packs and shooting them with a gun, all without apparent issues.

But, in general, the safety of sodium batteries is “not perfect,” Meng says, and it depends on the specific battery design. It all comes down to pairing the right cathode and electrolyte—and eliminating fire risks is more difficult for more energy-dense batteries, like those found in cars, or those designed to dispense energy over a longer period of time, like grid storage batteries.

social experiment by Livio Acerbo #greengroundit #wired https://www.wired.com/story/sodium-batteries-power-new-electric-car

Share this:

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Mastodon (Opens in new window) Mastodon
  • More
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on Pocket (Opens in new window) Pocket
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on WhatsApp (Opens in new window) WhatsApp

Like this:

Like Loading...
Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
  • Twitter
  • Facebook
  • YouTube
  • Instagram
  • Telegram
©2025 GREENGROUND | WordPress Theme by Superbthemes.com
This website uses cookies
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish.Accept Reject Read More
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT
%d